本篇主要讲的是 AOF 持久化,了解 AOF 的数据组织方式和运作机制。redis 主要在 aof.c 中实现 AOF 的操作。
数据结构 rio
redis AOF 持久化同样借助了 struct rio. 详细内容在《深入剖析 redis RDB 持久化策略》中有介绍。
AOF 数据组织方式
假设 redis 内存有「name:Jhon」的键值对,那么进行 AOF 持久化后,AOF 文件有如下内容:
*2 # 2个参数
$6 # 第一个参数长度为 6
SELECT # 第一个参数
$1 # 第二参数长度为 1
8 # 第二参数
*3 # 3个参数
$3 # 第一个参数长度为 4
SET # 第一个参数
$4 # 第二参数长度为 4
name # 第二个参数
$4 # 第三个参数长度为 4
Jhon # 第二参数长度为 4
所以对上面的内容进行恢复,能得到熟悉的一条 redis 命令:SELECT 8;SET name Jhon. 可以想象的是,redis 遍历内存数据集中的每个 key-value 对,依次写入磁盘中;redis 启动的时候,从 AOF 文件中读取数据,恢复数据。
AOF 持久化运作机制
和 redis RDB 持久化运作机制不同,redis AOF 有后台执行和边服务边备份两种方式。
1)AOF 后台执行的方式和 RDB 有类似的地方,fork 一个子进程,主进程仍进行服务,子进程执行 AOF 持久化,数据被 dump 到磁盘上。与 RDB 不同的是,后台子进程持久化过程中,主进程会记录期间的所有数据变更(主进程还在服务),并存储在 server.aof_rewrite_buf_blocks 中;后台子进程结束后,redis 更新缓存追加到 AOF 文件中,是 RDB 持久化所不具备的。
来说说更新缓存这个东西。redis 服务器产生数据变更的时候,譬如 set name Jhon,不仅仅会修改内存数据集,也会记录此更新(修改)操作,记录的方式就是上面所说的数据组织方式。
更新缓存可以存储在 server.aof_buf 中,你可以把它理解为一个小型临时中转站,所有累积的更新缓存都会先放入这里,它会在特定时机写入文件或者插入到 server.aof_rewrite_buf_blocks 下链表(下面会详述);server.aof_buf 中的数据在 propagrate() 添加,在涉及数据更新的地方都会调用 propagrate() 以累积变更。更新缓存也可以存储在 server.aof_rewrite_buf_blocks,这是一个元素类型为 struct aofrwblock 的链表,你可以把它理解为一个仓库,当后台有 AOF 子进程的时候,会将累积的更新缓存(在 server.aof_buf 中)插入到链表中,而当 AOF 子进程结束,它会被整个写入到文件。两者是有关联的。
下面是后台执行的主要代码:
// 启动后台子进程,执行 AOF 持久化操作。bgrewriteaofCommand(),startAppendOnly(),serverCron() 中会调用此函数
/* This is how rewriting of the append only file in background works:
*
* 1) The user calls BGREWRITEAOF
* 2) Redis calls this function, that forks():
* 2a) the child rewrite the append only file in a temp file.
* 2b) the parent accumulates differences in server.aof_rewrite_buf.
* 3) When the child finished '2a' exists.
* 4) The parent will trap the exit code, if it's OK, will append the
* data accumulated into server.aof_rewrite_buf into the temp file, and
* finally will rename(2) the temp file in the actual file name.
* The the new file is reopened as the new append only file. Profit!
*/
int rewriteAppendOnlyFileBackground(void) {
pid_t childpid;
long long start;
// 已经有正在执行备份的子进程
if (server.aof_child_pid != -1) return REDIS_ERR;
start = ustime();
if ((childpid = fork()) == 0) {
char tmpfile[256];
// 子进程
/* Child */
// 关闭监听
closeListeningSockets(0);
// 设置进程 title
redisSetProcTitle("redis-aof-rewrite");
// 临时文件名
snprintf(tmpfile,256,"temp-rewriteaof-bg-%d.aof", (int) getpid());
// 脏数据,其实就是子进程所消耗的内存大小
if (rewriteAppendOnlyFile(tmpfile) == REDIS_OK) {
// 获取脏数据大小
size_t private_dirty = zmalloc_get_private_dirty();
// 记录脏数据
if (private_dirty) {
redisLog(REDIS_NOTICE,
"AOF rewrite: %zu MB of memory used by copy-on-write",
private_dirty/(1024*1024));
}
exitFromChild(0);
} else {
exitFromChild(1);
}
} else {
/* Parent */
server.stat_fork_time = ustime()-start;
if (childpid == -1) {
redisLog(REDIS_WARNING,
"Can't rewrite append only file in background: fork: %s",
strerror(errno));
return REDIS_ERR;
}
redisLog(REDIS_NOTICE,
"Background append only file rewriting started by pid %d",childpid);
// AOF 已经开始执行,取消 AOF 计划
server.aof_rewrite_scheduled = 0;
// AOF 最近一次执行的起始时间
server.aof_rewrite_time_start = time(NULL);
// 子进程 ID
server.aof_child_pid = childpid;
updateDictResizePolicy();
// 因为更新缓存都将写入文件,要强制产生选择数据集的指令 SELECT ,以防出现数据合并错误。
/* We set appendseldb to -1 in order to force the next call to the
* feedAppendOnlyFile() to issue a SELECT command, so the differences
* accumulated by the parent into server.aof_rewrite_buf will start
* with a SELECT statement and it will be safe to merge. */
server.aof_selected_db = -1;
replicationScriptCacheFlush();
return REDIS_OK;
}
return REDIS_OK; /* unreached */
}
// AOF 持久化主函数。只在 rewriteAppendOnlyFileBackground() 中会调用此函数
/* Write a sequence of commands able to fully rebuild the dataset into
* "filename". Used both by REWRITEAOF and BGREWRITEAOF.
*
* In order to minimize the number of commands needed in the rewritten
* log Redis uses variadic commands when possible, such as RPUSH, SADD
* and ZADD. However at max REDIS_AOF_REWRITE_ITEMS_PER_CMD items per time
* are inserted using a single command. */
int rewriteAppendOnlyFile(char *filename) {
dictIterator *di = NULL;
dictEntry *de;
rio aof;
FILE *fp;
char tmpfile[256];
int j;
long long now = mstime();
/* Note that we have to use a different temp name here compared to the
* one used by rewriteAppendOnlyFileBackground() function. */
snprintf(tmpfile,256,"temp-rewriteaof-%d.aof", (int) getpid());
// 打开文件
fp = fopen(tmpfile,"w");
if (!fp) {
redisLog(REDIS_WARNING, "Opening the temp file for AOF rewrite in rewriteAppendOnlyFile(): %s", strerror(errno));
return REDIS_ERR;
}
// 初始化 rio 结构体
rioInitWithFile(&aof,fp);
// 如果设置了自动备份参数,将进行设置
if (server.aof_rewrite_incremental_fsync)
rioSetAutoSync(&aof,REDIS_AOF_AUTOSYNC_BYTES);
// 备份每一个数据集
for (j = 0; j < server.dbnum; j++) {
char selectcmd[] = "*2\r\n$6\r\nSELECT\r\n";
redisDb *db = server.db+j;
dict *d = db->dict;
if (dictSize(d) == 0) continue;
// 获取数据集的迭代器
di = dictGetSafeIterator(d);
if (!di) {
fclose(fp);
return REDIS_ERR;
}
// 写入 AOF 操作码
/* SELECT the new DB */
if (rioWrite(&aof,selectcmd,sizeof(selectcmd)-1) == 0) goto werr;
// 写入数据集序号
if (rioWriteBulkLongLong(&aof,j) == 0) goto werr;
// 写入数据集中每一个数据项
/* Iterate this DB writing every entry */
while((de = dictNext(di)) != NULL) {
sds keystr;
robj key, *o;
long long expiretime;
keystr = dictGetKey(de);
o = dictGetVal(de);
// 将 keystr 封装在 robj 里
initStaticStringObject(key,keystr);
// 获取过期时间
expiretime = getExpire(db,&key);
// 如果已经过期,放弃存储
/* If this key is already expired skip it */
if (expiretime != -1 && expiretime < now) continue;
// 写入键值对应的写操作
/* Save the key and associated value */
if (o->type == REDIS_STRING) {
/* Emit a SET command */
char cmd[]="*3\r\n$3\r\nSET\r\n";
if (rioWrite(&aof,cmd,sizeof(cmd)-1) == 0) goto werr;
/* Key and value */
if (rioWriteBulkObject(&aof,&key) == 0) goto werr;
if (rioWriteBulkObject(&aof,o) == 0) goto werr;
} else if (o->type == REDIS_LIST) {
if (rewriteListObject(&aof,&key,o) == 0) goto werr;
} else if (o->type == REDIS_SET) {
if (rewriteSetObject(&aof,&key,o) == 0) goto werr;
} else if (o->type == REDIS_ZSET) {
if (rewriteSortedSetObject(&aof,&key,o) == 0) goto werr;
} else if (o->type == REDIS_HASH) {
if (rewriteHashObject(&aof,&key,o) == 0) goto werr;
} else {
redisPanic("Unknown object type");
}
// 写入过期时间
/* Save the expire time */
if (expiretime != -1) {
char cmd[]="*3\r\n$9\r\nPEXPIREAT\r\n";
if (rioWrite(&aof,cmd,sizeof(cmd)-1) == 0) goto werr;
if (rioWriteBulkObject(&aof,&key) == 0) goto werr;
if (rioWriteBulkLongLong(&aof,expiretime) == 0) goto werr;
}
}
// 释放迭代器
dictReleaseIterator(di);
}
// 写入磁盘
/* Make sure data will not remain on the OS's output buffers */
fflush(fp);
aof_fsync(fileno(fp));
fclose(fp);
// 重写文件名
/* Use RENAME to make sure the DB file is changed atomically only
* if the generate DB file is ok. */
if (rename(tmpfile,filename) == -1) {
redisLog(REDIS_WARNING,"Error moving temp append only file on the final destination: %s", strerror(errno));
unlink(tmpfile);
return REDIS_ERR;
}
redisLog(REDIS_NOTICE,"SYNC append only file rewrite performed");
return REDIS_OK;
werr:
// 清理工作
fclose(fp);
unlink(tmpfile);
redisLog(REDIS_WARNING,"Write error writing append only file on disk: %s", strerror(errno));
if (di) dictReleaseIterator(di);
return REDIS_ERR;
}
// 后台子进程结束后,redis 更新缓存 server.aof_rewrite_buf_blocks 追加到 AOF 文件中
// 在 AOF 持久化结束后会执行这个函数, backgroundRewriteDoneHandler() 主要工作是将 server.aof_rewrite_buf_blocks,即 AOF 缓存写入文件
/* A background append only file rewriting (BGREWRITEAOF) terminated its work.
* Handle this. */
void backgroundRewriteDoneHandler(int exitcode, int bysignal) {
......
// 将 AOF 缓存 server.aof_rewrite_buf_blocks 的 AOF 写入磁盘
if (aofRewriteBufferWrite(newfd) == -1) {
redisLog(REDIS_WARNING,
"Error trying to flush the parent diff to the rewritten AOF: %s", strerror(errno));
close(newfd);
goto cleanup;
}
......
}
// 将累积的更新缓存 server.aof_rewrite_buf_blocks 同步到磁盘
/* Write the buffer (possibly composed of multiple blocks) into the specified
* fd. If no short write or any other error happens -1 is returned,
* otherwise the number of bytes written is returned. */
ssize_t aofRewriteBufferWrite(int fd) {
listNode *ln;
listIter li;
ssize_t count = 0;
listRewind(server.aof_rewrite_buf_blocks,&li);
while((ln = listNext(&li))) {
aofrwblock *block = listNodeValue(ln);
ssize_t nwritten;
if (block->used) {
nwritten = write(fd,block->buf,block->used);
if (nwritten != block->used) {
if (nwritten == 0) errno = EIO;
return -1;
}
count += nwritten;
}
}
return count;
}
2)边服务边备份的方式,即 redis 服务器会把所有的数据变更存储在 server.aof_buf 中,并在特定时机将更新缓存写入预设定的文件(server.aof_filename)。特定时机有三种:
-
进入事件循环之前
-
redis 服务器定时程序 serverCron() 中
-
停止 AOF 策略的 stopAppendOnly() 中
redis 无非是不想服务器突然崩溃终止,导致过多的数据丢失。redis 默认是每两秒钟进行一次边服务边备份,即隔两秒将累积的写入文件。
redis 为什么取消直接在本进程进行 AOF 持久化的方法?原因可能是产生一个 AOF 文件要比 RDB 文件消耗更多的时间;如果在当前进程执行 AOF 持久化,会占用服务进程(主进程)较多的时间,停止服务的时间也更长(?)
下面是边服务边备份的主要代码:
// 同步磁盘;将所有累积的更新 server.aof_buf 写入磁盘
/* Write the append only file buffer on disk.
*
* Since we are required to write the AOF before replying to the client,
* and the only way the client socket can get a write is entering when the
* the event loop, we accumulate all the AOF writes in a memory
* buffer and write it on disk using this function just before entering
* the event loop again.
*
* About the 'force' argument:
*
* When the fsync policy is set to 'everysec' we may delay the flush if there
* is still an fsync() going on in the background thread, since for instance
* on Linux write(2) will be blocked by the background fsync anyway.
* When this happens we remember that there is some aof buffer to be
* flushed ASAP, and will try to do that in the serverCron() function.
*
* However if force is set to 1 we'll write regardless of the background
* fsync. */
void flushAppendOnlyFile(int force) {
ssize_t nwritten;
int sync_in_progress = 0;
// 无数据,无需同步到磁盘
if (sdslen(server.aof_buf) == 0) return;
// 创建线程任务,主要调用 fsync()
if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;
// 如果没有设置强制同步的选项,可能不会立即进行同步
if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
// 推迟执行 AOF
/* With this append fsync policy we do background fsyncing.
* If the fsync is still in progress we can try to delay
* the write for a couple of seconds. */
if (sync_in_progress) {
if (server.aof_flush_postponed_start == 0) {
// 设置延迟冲洗时间选项
/* No previous write postponinig, remember that we are
* postponing the flush and return. */
server.aof_flush_postponed_start = server.unixtime; // /* Unix time sampled every cron cycle. */
return;
// 没有超过 2s,直接结束
} else if (server.unixtime - server.aof_flush_postponed_start < 2) {
/* We were already waiting for fsync to finish, but for less
* than two seconds this is still ok. Postpone again. */
return;
}
// 否则,要强制写入磁盘
/* Otherwise fall trough, and go write since we can't wait
* over two seconds. */
server.aof_delayed_fsync++;
redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
}
}
// 取消延迟冲洗时间设置
/* If you are following this code path, then we are going to write so
* set reset the postponed flush sentinel to zero. */
server.aof_flush_postponed_start = 0;
/* We want to perform a single write. This should be guaranteed atomic
* at least if the filesystem we are writing is a real physical one.
* While this will save us against the server being killed I don't think
* there is much to do about the whole server stopping for power problems
* or alike */
// AOF 文件已经打开了。将 server.aof_buf 中的所有缓存数据写入文件
nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
if (nwritten != (signed)sdslen(server.aof_buf)) {
/* Ooops, we are in troubles. The best thing to do for now is
* aborting instead of giving the illusion that everything is
* working as expected. */
if (nwritten == -1) {
redisLog(REDIS_WARNING,"Exiting on error writing to the append-only file: %s",strerror(errno));
} else {
redisLog(REDIS_WARNING,"Exiting on short write while writing to "
"the append-only file: %s (nwritten=%ld, "
"expected=%ld)",
strerror(errno),
(long)nwritten,
(long)sdslen(server.aof_buf));
if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
redisLog(REDIS_WARNING, "Could not remove short write "
"from the append-only file. Redis may refuse "
"to load the AOF the next time it starts. "
"ftruncate: %s", strerror(errno));
}
}
exit(1);
}
// 更新 AOF 文件的大小
server.aof_current_size += nwritten;
/*当 server.aof_buf 足够小,重新利用空间,防止频繁的内存分配。
相反,当 server.aof_buf 占据大量的空间,采取的策略是释放空间,可见 redis 对内存很敏感。*/
/* Re-use AOF buffer when it is small enough. The maximum comes from the
* arena size of 4k minus some overhead (but is otherwise arbitrary). */
if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
sdsclear(server.aof_buf);
} else {
sdsfree(server.aof_buf);
server.aof_buf = sdsempty();
}
/* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
* children doing I/O in the background. */
if (server.aof_no_fsync_on_rewrite &&
(server.aof_child_pid != -1 || server.rdb_child_pid != -1))
return;
// sync,写入磁盘
/* Perform the fsync if needed. */
if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
/* aof_fsync is defined as fdatasync() for Linux in order to avoid
* flushing metadata. */
aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
server.aof_last_fsync = server.unixtime;
} else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
server.unixtime > server.aof_last_fsync)) {
if (!sync_in_progress) aof_background_fsync(server.aof_fd);
server.aof_last_fsync = server.unixtime;
}
}
细说更新缓存
上面两次提到了「更新缓存」,它即是 redis 累积的数据变更。
更新缓存可以存储在 server.aof_buf 中,可以存储在 server.server.aof_rewrite_buf_blocks 连表中。他们的关系是:每一次数据变更记录都会写入 server.aof_buf 中,同时如果后台子进程在持久化,变更记录还会被写入 server.server.aof_rewrite_buf_blocks 中。server.aof_buf 会在特定时期写入指定文件,server.server.aof_rewrite_buf_blocks 会在后台持久化结束后追加到文件。
redis 源码中是这么实现的:propagrate()->feedAppendOnlyFile()->aofRewriteBufferAppend()
注释:feedAppendOnlyFile() 会把更新添加到 server.aof_buf;接下来会有一个判断,如果存在 AOF 子进程,则调用 aofRewriteBufferAppend() 将 server.aof_buf 中的所有数据插入到 server.aof_rewrite_buf_blocks 链表。
一副可以缓解视力疲劳的图片——AOF 持久化运作机制:
下面是主要的代码:
// 向 AOF 和从机发布数据更新
/* Propagate the specified command (in the context of the specified database id)
* to AOF and Slaves.
*
* flags are an xor between:
* + REDIS_PROPAGATE_NONE (no propagation of command at all)
* + REDIS_PROPAGATE_AOF (propagate into the AOF file if is enabled)
* + REDIS_PROPAGATE_REPL (propagate into the replication link)
*/
void propagate(struct redisCommand *cmd, int dbid, robj **argv, int argc,
int flags)
{
// AOF 策略需要打开,且设置 AOF 传播标记,将更新发布给本地文件
if (server.aof_state != REDIS_AOF_OFF && flags & REDIS_PROPAGATE_AOF)
feedAppendOnlyFile(cmd,dbid,argv,argc);
// 设置了从机传播标记,将更新发布给从机
if (flags & REDIS_PROPAGATE_REPL)
replicationFeedSlaves(server.slaves,dbid,argv,argc);
}
// 将数据更新记录到 AOF 缓存中
void feedAppendOnlyFile(struct redisCommand *cmd, int dictid, robj **argv, int argc) {
sds buf = sdsempty();
robj *tmpargv[3];
/* The DB this command was targeting is not the same as the last command
* we appendend. To issue a SELECT command is needed. */
if (dictid != server.aof_selected_db) {
char seldb[64];
snprintf(seldb,sizeof(seldb),"%d",dictid);
buf = sdscatprintf(buf,"*2\r\n$6\r\nSELECT\r\n$%lu\r\n%s\r\n",
(unsigned long)strlen(seldb),seldb);
server.aof_selected_db = dictid;
}
if (cmd->proc == expireCommand || cmd->proc == pexpireCommand ||
cmd->proc == expireatCommand) {
/* Translate EXPIRE/PEXPIRE/EXPIREAT into PEXPIREAT */
buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);
} else if (cmd->proc == setexCommand || cmd->proc == psetexCommand) {
/* Translate SETEX/PSETEX to SET and PEXPIREAT */
tmpargv[0] = createStringObject("SET",3);
tmpargv[1] = argv[1];
tmpargv[2] = argv[3];
buf = catAppendOnlyGenericCommand(buf,3,tmpargv);
decrRefCount(tmpargv[0]);
buf = catAppendOnlyExpireAtCommand(buf,cmd,argv[1],argv[2]);
} else {
/* All the other commands don't need translation or need the
* same translation already operated in the command vector
* for the replication itself. */
buf = catAppendOnlyGenericCommand(buf,argc,argv);
}
// 将生成的 AOF 追加到 server.aof_buf 中。server.在下一次进入事件循环之前,aof_buf 中的内容将会写到磁盘上
/* Append to the AOF buffer. This will be flushed on disk just before
* of re-entering the event loop, so before the client will get a
* positive reply about the operation performed. */
if (server.aof_state == REDIS_AOF_ON)
server.aof_buf = sdscatlen(server.aof_buf,buf,sdslen(buf));
// 如果已经有 AOF 子进程运行,redis 采取的策略是累积子进程 AOF 备份的数据和内存中数据集的差异。 aofRewriteBufferAppend() 把 buf 的内容追加到 server.aof_rewrite_buf_blocks 数组中
/* If a background append only file rewriting is in progress we want to
* accumulate the differences between the child DB and the current one
* in a buffer, so that when the child process will do its work we
* can append the differences to the new append only file. */
if (server.aof_child_pid != -1)
aofRewriteBufferAppend((unsigned char*)buf,sdslen(buf));
sdsfree(buf);
}
// 将数据更新记录写入 server.aof_rewrite_buf_blocks,此函数只由 feedAppendOnlyFile() 调用
/* Append data to the AOF rewrite buffer, allocating new blocks if needed. */
void aofRewriteBufferAppend(unsigned char *s, unsigned long len) {
// 尾插法
listNode *ln = listLast(server.aof_rewrite_buf_blocks);
aofrwblock *block = ln ? ln->value : NULL;
while(len) {
/* If we already got at least an allocated block, try appending
* at least some piece into it. */
if (block) {
unsigned long thislen = (block->free < len) ? block->free : len;
if (thislen) { /* The current block is not already full. */
memcpy(block->buf+block->used, s, thislen);
block->used += thislen;
block->free -= thislen;
s += thislen;
len -= thislen;
}
}
if (len) { /* First block to allocate, or need another block. */
int numblocks;
// 创建新的节点,插到尾部
block = zmalloc(sizeof(*block));
block->free = AOF_RW_BUF_BLOCK_SIZE;
block->used = 0;
// 尾插法
listAddNodeTail(server.aof_rewrite_buf_blocks,block);
/* Log every time we cross more 10 or 100 blocks, respectively
* as a notice or warning. */
numblocks = listLength(server.aof_rewrite_buf_blocks);
if (((numblocks+1) % 10) == 0) {
int level = ((numblocks+1) % 100) == 0 ? REDIS_WARNING :
REDIS_NOTICE;
redisLog(level,"Background AOF buffer size: %lu MB",
aofRewriteBufferSize()/(1024*1024));
}
}
}
}
两种数据落地的方式,就是 AOF 的两个主线。因此,redis AOF 持久化机制有两条主线:后台执行和边服务边备份,抓住这两点就能理解 redis AOF 了。
这里有一个疑问,两条主线都会涉及文件的写:后台执行会写一个 AOF 文件,边服务边备份也会写一个,以哪个为准?
后台持久化的数据首先会被写入「temp-rewriteaof-bg-%d.aof」,其中「%d」是 AOF 子进程 id;待 AOF 子进程结束后,「temp-rewriteaof-bg-%d.aof」会被以追加的方式打开,继而写入 server.aof_rewrite_buf_blocks 中的更新缓存,最后「temp-rewriteaof-bg-%d.aof」文件被命名为 server.aof_filename,所以之前的名为 server.aof_filename 的文件会被删除,也就是说边服务边备份写入的文件会被删除。边服务边备份的数据会被一直写入到 server.aof_filename 文件中。
因此,确实会产生两个文件,但是最后都会变成 server.aof_filename 文件。
这里还有一个疑问,既然有了后台持久化,为什么还要边服务边备份?边服务边备份时间长了会产生数据冗余甚至备份过旧的数据,而后台持久化可以消除这些东西。看,这里是 redis 的双保险。
AOF 恢复过程
AOF 的数据恢复过程设计实在是棒极了,它模拟一个服务过程。redis 首先虚拟一个客户端,读取 AOF 文件恢复 redis 命令和参数;然后就像服务客户端一样执行命令相应的函数,从而恢复数据。这些过程主要在loadAppendOnlyFile() 中实现。
// 加载 AOF 文件,恢复数据
/* Replay the append log file. On error REDIS_OK is returned. On non fatal
* error (the append only file is zero-length) REDIS_ERR is returned. On
* fatal error an error message is logged and the program exists. */
int loadAppendOnlyFile(char *filename) {
struct redisClient *fakeClient;
FILE *fp = fopen(filename,"r");
struct redis_stat sb;
int old_aof_state = server.aof_state;
long loops = 0;
// 文件大小不能为 0
if (fp && redis_fstat(fileno(fp),&sb) != -1 && sb.st_size == 0) {
server.aof_current_size = 0;
fclose(fp);
return REDIS_ERR;
}
if (fp == NULL) {
redisLog(REDIS_WARNING,"Fatal error: can't open the append log file for reading: %s",strerror(errno));
exit(1);
}
// 正在执行 AOF 加载操作,于是暂时禁止 AOF 的所有操作,以免混淆
/* Temporarily disable AOF, to prevent EXEC from feeding a MULTI
* to the same file we're about to read. */
server.aof_state = REDIS_AOF_OFF;
// 虚拟出一个客户端,即 redisClient
fakeClient = createFakeClient();
startLoading(fp);
while(1) {
int argc, j;
unsigned long len;
robj **argv;
char buf[128];
sds argsds;
struct redisCommand *cmd;
// 每循环 1000 次,在恢复数据的同时,服务器也为客户端服务。aeProcessEvents() 会进入事件循环
/* Serve the clients from time to time */
if (!(loops++ % 1000)) {
loadingProgress(ftello(fp));
aeProcessEvents(server.el, AE_FILE_EVENTS|AE_DONT_WAIT);
}
// 可能 aof 文件到了结尾
if (fgets(buf,sizeof(buf),fp) == NULL) {
if (feof(fp))
break;
else
goto readerr;
}
// 必须以“*”开头,格式不对,退出
if (buf[0] != '*') goto fmterr;
// 参数的个数
argc = atoi(buf+1);
// 参数个数错误
if (argc < 1) goto fmterr;
// 为参数分配空间
argv = zmalloc(sizeof(robj*)*argc);
// 依次读取参数
for (j = 0; j < argc; j++) {
if (fgets(buf,sizeof(buf),fp) == NULL) goto readerr;
if (buf[0] != '$') goto fmterr;
len = strtol(buf+1,NULL,10);
argsds = sdsnewlen(NULL,len);
if (len && fread(argsds,len,1,fp) == 0) goto fmterr;
argv[j] = createObject(REDIS_STRING,argsds);
if (fread(buf,2,1,fp) == 0) goto fmterr; /* discard CRLF */
}
// 找到相应的命令
/* Command lookup */
cmd = lookupCommand(argv[0]->ptr);
if (!cmd) {
redisLog(REDIS_WARNING,"Unknown command '%s' reading the append only file", (char*)argv[0]->ptr);
exit(1);
}
// 执行命令,模拟服务客户端请求的过程,从而写入数据
/* Run the command in the context of a fake client */
fakeClient->argc = argc;
fakeClient->argv = argv;
cmd->proc(fakeClient);
/* The fake client should not have a reply */
redisAssert(fakeClient->bufpos == 0 && listLength(fakeClient->reply) == 0);
/* The fake client should never get blocked */
redisAssert((fakeClient->flags & REDIS_BLOCKED) == 0);
// 释放虚拟客户端空间
/* Clean up. Command code may have changed argv/argc so we use the
* argv/argc of the client instead of the local variables. */
for (j = 0; j < fakeClient->argc; j++)
decrRefCount(fakeClient->argv[j]);
zfree(fakeClient->argv);
}
/* This point can only be reached when EOF is reached without errors.
* If the client is in the middle of a MULTI/EXEC, log error and quit. */
if (fakeClient->flags & REDIS_MULTI) goto readerr;
// 清理工作
fclose(fp);
freeFakeClient(fakeClient);
// 恢复旧的 AOF 状态
server.aof_state = old_aof_state;
stopLoading();
// 记录最近 AOF 操作的文件大小
aofUpdateCurrentSize();
server.aof_rewrite_base_size = server.aof_current_size;
return REDIS_OK;
readerr:
// 错误,清理工作
if (feof(fp)) {
redisLog(REDIS_WARNING,"Unexpected end of file reading the append only file");
} else {
redisLog(REDIS_WARNING,"Unrecoverable error reading the append only file: %s", strerror(errno));
}
exit(1);
fmterr:
redisLog(REDIS_WARNING,"Bad file format reading the append only file: make a backup of your AOF file, then use ./redis-check-aof --fix <filename>");
exit(1);
}
AOF 的适用场景
如果对数据比较关心,分秒必争,可以用 AOF 持久化,而且 AOF 文件很容易进行分析。
—-
Dylan 2014-3-26
10 April 2014 会持续更新