在哪里开始淘汰数据

redis 每服务客户端执行一个命令的时候,会检测使用的内存是否超额。如果超额,即进行数据淘汰。

// 执行命令
int processCommand(redisClient *c) {
    ......
    // 内存超额
    /* Handle the maxmemory directive.
    *
    * First we try to free some memory if possible (if there are volatile
    * keys in the dataset). If there are not the only thing we can do
    * is returning an error. */
    if (server.maxmemory) {
        int retval = freeMemoryIfNeeded();
        if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
            flagTransaction(c);
            addReply(c, shared.oomerr);
            return REDIS_OK;
        }
    }
    ......
}

这是我们之前讲述过的命令处理函数。在处理命令处理函数的过程,会涉及到内存使用量的检测,如果检测到内存使用超额,会触发数据淘汰机制。我们来看看淘汰机制触发的函数 freeMemoryIfNeeded() 里面发生了什么。

// 如果需要,是否一些内存
int freeMemoryIfNeeded(void) {
    size_t mem_used, mem_tofree, mem_freed;
    int slaves = listLength(server.slaves);

    // redis 从机回复空间和 AOF 内存大小不计算入 redis 内存大小
    // 关于已使用内存大小是如何统计的,我们会其他章节讲解,这里先忽略这个细节
    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = zmalloc_used_memory();

    // 从机回复空间大小
    if (slaves) {
        listIter li;
        listNode *ln;

        listRewind(server.slaves,&li);
        while((ln = listNext(&li))) {
            redisClient *slave = listNodeValue(ln);
            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
            if (obuf_bytes > mem_used)
                mem_used = 0;
            else
                mem_used -= obuf_bytes;
        }
    }
    // server.aof_buf && server.aof_rewrite_buf_blocks
    if (server.aof_state != REDIS_AOF_OFF) {
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    }

    // 内存是否超过设置大小
    /* Check if we are over the memory limit. */
    if (mem_used <= server.maxmemory) return REDIS_OK;

    // redis 中可以设置内存超额策略
    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
        return REDIS_ERR; /* We need to free memory, but policy forbids. */

    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;
    while (mem_freed < mem_tofree) {
        int j, k, keys_freed = 0;

        // 遍历所有数据集
        for (j = 0; j < server.dbnum; j++) {
            long bestval = 0; /* just to prevent warning */
            sds bestkey = NULL;
            struct dictEntry *de;
            redisDb *db = server.db+j;
            dict *dict;

            // 不同的策略,选择的数据集不一样
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
            {
                dict = server.db[j].dict;
            } else {
                dict = server.db[j].expires;
            }

            // 数据集为空,继续下一个数据集
            if (dictSize(dict) == 0) continue;

            // 随机淘汰随机策略:随机挑选
            /* volatile-random and allkeys-random policy */
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
            {
                de = dictGetRandomKey(dict);
                bestkey = dictGetKey(de);
            }

            // LRU 策略:挑选最近最少使用的数据
            /* volatile-lru and allkeys-lru policy */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
            {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最近最少使用的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    robj *o;

                    // 随机挑选键值对
                    de = dictGetRandomKey(dict);

                    // 获取键
                    thiskey = dictGetKey(de);

                    /* When policy is volatile-lru we need an additional lookup
                     * to locate the real key, as dict is set to db->expires. */
                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                        de = dictFind(db->dict, thiskey);
                    o = dictGetVal(de);

                    // 计算数据的空闲时间
                    thisval = estimateObjectIdleTime(o);

                    // 当前键值空闲时间更长,则记录
                    /* Higher idle time is better candidate for deletion */
                    if (bestkey == NULL || thisval > bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }

            // TTL 策略:挑选将要过期的数据
            /* volatile-ttl */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最快要过期的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;

                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    thisval = (long) dictGetVal(de);

                    /* Expire sooner (minor expire unix timestamp) is better
                     * candidate for deletion */
                    if (bestkey == NULL || thisval < bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }

            // 删除选定的键值对
            /* Finally remove the selected key. */
            if (bestkey) {
                long long delta;

                robj *keyobj = createStringObject(bestkey,sdslen(bestkey));

                // 发布数据更新消息,主要是 AOF 持久化和从机
                propagateExpire(db,keyobj);

                // 注意, propagateExpire() 可能会导致内存的分配, 
                // propagateExpire() 提前执行就是因为 redis 只计算 
                // dbDelete() 释放的内存大小。倘若同时计算 dbDelete() 
                // 释放的内存和 propagateExpire() 分配空间的大小,与此
                // 同时假设分配空间大于释放空间,就有可能永远退不出这个循环。
                // 下面的代码会同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小:
                // propagateExpire(db,keyobj);
                // delta = (long long) zmalloc_used_memory();
                // dbDelete(db,keyobj);
                // delta -= (long long) zmalloc_used_memory();
                // mem_freed += delta;
                /////////////////////////////////////////

                /* We compute the amount of memory freed by dbDelete() alone.
                 * It is possible that actually the memory needed to propagate
                 * the DEL in AOF and replication link is greater than the one
                 * we are freeing removing the key, but we can't account for
                 * that otherwise we would never exit the loop.
                 *
                 * AOF and Output buffer memory will be freed eventually so
                 * we only care about memory used by the key space. */
                // 只计算 dbDelete() 释放内存的大小
                delta = (long long) zmalloc_used_memory();
                dbDelete(db,keyobj);
                delta -= (long long) zmalloc_used_memory();
                mem_freed += delta;

                server.stat_evictedkeys++;

                // 将数据的删除通知所有的订阅客户端
                notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted",
                    keyobj, db->id);
                decrRefCount(keyobj);
                keys_freed++;

                // 将从机回复空间中的数据及时发送给从机
                /* When the memory to free starts to be big enough, we may
                 * start spending so much time here that is impossible to
                 * deliver data to the slaves fast enough, so we force the
                 * transmission here inside the loop. */
                if (slaves) flushSlavesOutputBuffers();
            }
        }

        // 未能释放空间,且此时 redis 使用的内存大小依旧超额,失败返回
        if (!keys_freed) return REDIS_ERR; /* nothing to free... */
    }
    return REDIS_OK;
}// 如果需要,是否一些内存
int freeMemoryIfNeeded(void) {
    size_t mem_used, mem_tofree, mem_freed;
    int slaves = listLength(server.slaves);

    // redis 从机回复空间和 AOF 内存大小不计算入 redis 内存大小
    // 关于已使用内存大小是如何统计的,我们会其他章节讲解,这里先忽略这个细节
    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = zmalloc_used_memory();

    // 从机回复空间大小
    if (slaves) {
        listIter li;
        listNode *ln;

        listRewind(server.slaves,&li);
        while((ln = listNext(&li))) {
            redisClient *slave = listNodeValue(ln);
            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
            if (obuf_bytes > mem_used)
                mem_used = 0;
            else
                mem_used -= obuf_bytes;
        }
    }
    // server.aof_buf && server.aof_rewrite_buf_blocks
    if (server.aof_state != REDIS_AOF_OFF) {
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    }

    // 内存是否超过设置大小
    /* Check if we are over the memory limit. */
    if (mem_used <= server.maxmemory) return REDIS_OK;

    // redis 中可以设置内存超额策略
    if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
        return REDIS_ERR; /* We need to free memory, but policy forbids. */

    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;
    while (mem_freed < mem_tofree) {
        int j, k, keys_freed = 0;

        // 遍历所有数据集
        for (j = 0; j < server.dbnum; j++) {
            long bestval = 0; /* just to prevent warning */
            sds bestkey = NULL;
            struct dictEntry *de;
            redisDb *db = server.db+j;
            dict *dict;

            // 不同的策略,选择的数据集不一样
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM)
            {
                dict = server.db[j].dict;
            } else {
                dict = server.db[j].expires;
            }

            // 数据集为空,继续下一个数据集
            if (dictSize(dict) == 0) continue;

            // 随机淘汰随机策略:随机挑选
            /* volatile-random and allkeys-random policy */
            if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
            {
                de = dictGetRandomKey(dict);
                bestkey = dictGetKey(de);
            }

            // LRU 策略:挑选最近最少使用的数据
            /* volatile-lru and allkeys-lru policy */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
                server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
            {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最近最少使用的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;
                    robj *o;

                    // 随机挑选键值对
                    de = dictGetRandomKey(dict);

                    // 获取键
                    thiskey = dictGetKey(de);

                    /* When policy is volatile-lru we need an additional lookup
                     * to locate the real key, as dict is set to db->expires. */
                    if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
                        de = dictFind(db->dict, thiskey);
                    o = dictGetVal(de);

                    // 计算数据的空闲时间
                    thisval = estimateObjectIdleTime(o);

                    // 当前键值空闲时间更长,则记录
                    /* Higher idle time is better candidate for deletion */
                    if (bestkey == NULL || thisval > bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }

            // TTL 策略:挑选将要过期的数据
            /* volatile-ttl */
            else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
                // server.maxmemory_samples 为随机挑选键值对次数
                // 随机挑选 server.maxmemory_samples个键值对,驱逐最快要过期的数据
                for (k = 0; k < server.maxmemory_samples; k++) {
                    sds thiskey;
                    long thisval;

                    de = dictGetRandomKey(dict);
                    thiskey = dictGetKey(de);
                    thisval = (long) dictGetVal(de);

                    /* Expire sooner (minor expire unix timestamp) is better
                     * candidate for deletion */
                    if (bestkey == NULL || thisval < bestval) {
                        bestkey = thiskey;
                        bestval = thisval;
                    }
                }
            }

            // 删除选定的键值对
            /* Finally remove the selected key. */
            if (bestkey) {
                long long delta;

                robj *keyobj = createStringObject(bestkey,sdslen(bestkey));

                // 发布数据更新消息,主要是 AOF 持久化和从机
                propagateExpire(db,keyobj);

                // 注意, propagateExpire() 可能会导致内存的分配, 
                // propagateExpire() 提前执行就是因为 redis 只计算 
                // dbDelete() 释放的内存大小。倘若同时计算 dbDelete() 
                // 释放的内存和 propagateExpire() 分配空间的大小,与此
                // 同时假设分配空间大于释放空间,就有可能永远退不出这个循环。
                // 下面的代码会同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小:
                // propagateExpire(db,keyobj);
                // delta = (long long) zmalloc_used_memory();
                // dbDelete(db,keyobj);
                // delta -= (long long) zmalloc_used_memory();
                // mem_freed += delta;
                /////////////////////////////////////////

                /* We compute the amount of memory freed by dbDelete() alone.
                 * It is possible that actually the memory needed to propagate
                 * the DEL in AOF and replication link is greater than the one
                 * we are freeing removing the key, but we can't account for
                 * that otherwise we would never exit the loop.
                 *
                 * AOF and Output buffer memory will be freed eventually so
                 * we only care about memory used by the key space. */
                // 只计算 dbDelete() 释放内存的大小
                delta = (long long) zmalloc_used_memory();
                dbDelete(db,keyobj);
                delta -= (long long) zmalloc_used_memory();
                mem_freed += delta;

                server.stat_evictedkeys++;

                // 将数据的删除通知所有的订阅客户端
                notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted",
                    keyobj, db->id);
                decrRefCount(keyobj);
                keys_freed++;

                // 将从机回复空间中的数据及时发送给从机
                /* When the memory to free starts to be big enough, we may
                 * start spending so much time here that is impossible to
                 * deliver data to the slaves fast enough, so we force the
                 * transmission here inside the loop. */
                if (slaves) flushSlavesOutputBuffers();
            }
        }

        // 未能释放空间,且此时 redis 使用的内存大小依旧超额,失败返回
        if (!keys_freed) return REDIS_ERR; /* nothing to free... */
    }
    return REDIS_OK;
}

results matching ""

    No results matching ""